NPTEL Syllabus Template

Course Title	Polymeric Biomaterials: Structure, Properties, Function and Performance
Discipline	 Chemical Engineering Biotechnology and Bioengineering Materials Science 12 weeks (30 hours)
4/8/12 weeks (10/20/30 hours @2.5 hrs/week)	
Number of times you have taught this course totally and in the last 5 years (2-3 times is preferable, if not more)	 Once each in 2016, 2017, 2018, 2019: 2-credit course titled "Biomaterials Science and Engineering" Once each in 2021, 2022, 2023: 1 credit of a 2-credit course titled "Polymeric Biomaterials: Science and Applications"
Is this course syllabus approved by AICTE or by Senate in your/any institute? If yes, please give the course name and institute under which this is approved.	 Yes, both approved by the Senate at IIT Hyderabad CH6840: Biomaterials Science and Engineering PB5090: Polymeric Biomaterials: Science and Applications
The time frame of when you would want to offer the course: (Jan 2024/July 2024)	• July 2024
Will it map to any course in the AICTE model curriculum?	Not applicable
LINK to AICTE Curriculum LINK 1 LINK 2 LINK 3 LINK 4	
Will it map onto any of the NPTEL domain? LINK to Domain page: https://nptel.ac.in/noc/Domain/	 Chemical Engineering Biotechnology and Bioengineering

Name of the Instructor(s)	Satyavrata Samavedi
Department	Chemical Engineering
Institute	Indian Institute of Technology Hyderabad
Email ID	samavedi@che.iith.ac.in
Mobile Phone Number	+91-9444008633
Website of Instructor	samavedi.weebly.com

Intended audience	 Students in Chemical Engineering, Biomedical Engineering, Biotechnology and Materials Science Researchers and industry personnel working with polymers for biomedical applications wishing to understand fundamental principles guiding the design of such materials
Is it a core/elective course?	
Is it a UG/PG/PhD level course?	 4th year OG PG PhD
Is this course relevant for GATE exam preparation?	Not applicable
Which degrees would it apply to? (BE/ME/MS/BSc/MSc/PhD etc)	BEMSc/MS/MEPhD
What are the next set of courses that can be taken by students who complete this?	 Courses on specialized applications such as drug delivery and tissue engineering Courses on advanced manufacture methods such as biofabrication and 3D bioprinting Courses on characterization such as rheology for biomedical applications
Pre-requisites in terms of educational qualification of participants, or if any other courses should be done before this course can be taken	 Foundational courses in physics, chemistry and mathematics at the college level
Industry recognition of this course – List of companies/industry that will recognize/value this online course	 Pharmaceutical industries Implant manufacturing companies Medical device manufacturing companies Biotechnology firms MNCs with healthcare verticals
Will the final certification exam be- paper/pen type or computer based - both are proctored	• Online
Will the course require use of any software such as MATLAB or any programming language, etc. or any other tool? If yes, does it have a Linux based compiler available or if licensed, can we get the educational license for the same?	Not applicable
Names of 2 reviewers for the course (can be from other institutes – will be used if we need any additional inputs on the course) – Name, Dept, email id, Institute	Name:Prof. Abhijit DeshpandeDept.:Chemical EngineeringInstitute:IIT MadrasEmail:abhijit@iitm.ac.inName:Dr. Shamik SenDept.:Bioscience and BioengineeringInstitute:IIT BombayEmail:shamiks@iitb.ac.in

	•	Introduction to Physical Polymer Science, L.H.
		Sperling, 4 th edition (2006), John Wiley and Sons
	•	Biomaterials Science: An Introduction to Materials in
		Medicine, Edited by William R Wagner, Shelly E.
List of reference materials/books		Sakiyama-Elbert, Guigen Zhang, Michael J
		Yaszemski, 4th edition (2020), Academic Press
	•	Biomaterials: The Intersection of Biology and
		Materials Science, Johnna S. Temenoff and Antonios
		G. Mikos, International edition (2008), Pearson-
		Prentice Hall

FOR GETTING THE INTRODUCTORY COURSE PAGE READY - TO OPEN FOR ENROLLMENTS

1. Introduce the course in about 4-5 lines

Polymeric biomaterials find extensive use in clinical implants and in research domains such as drug delivery and tissue engineering. Despite their use in diverse areas, a common structure-property-function framework guides their design and performance across applications. This course will provide a fundamental understanding of this framework to enable the effective design of polymeric biomaterials for biomedical applications. Real-world examples of clinically relevant synthetic/natural polymers and biomedical hydrogels will be discussed to highlight hierarchical organization and multi-scale functionality. Important structural, thermodynamic, mechanical and surface properties of polymeric biomaterials will be correlated with function and performance. Principles that govern their processing and physico-chemical/biological modification strategies will be elucidated. Key biological responses (e.g., protein adsorption, inflammation, adverse reactions) and clinical performance will also be discussed.

2. Photograph of instructor(s)

3. About the instructor(s)

Dr. Satyavrata Samavedi is currently an associate professor in the Department of Chemical Engineering at IIT Hyderabad. He obtained his B.Tech. in Chemical Engineering from NIT Tiruchirappalli, and his Ph.D. also in Chemical Engineering from Virginia Tech, USA. Subsequently, he worked as a postdoctoral researcher in Biomedical Engineering at Rensselaer Polytechnic Institute, USA before joining IIT Hyderabad in late 2015. His research centers around unraveling structure-property-processing relationships in polymeric biomaterials with the goal of designing functionalized soft materials for biomedical applications. His research lab at IIT Hyderabad studies the process of polymer electrospinning and employs the insights gained from such investigations to design electrospun meshes for controlled drug release, combination therapeutic delivery and immunomodulation.

4. An introductory video about the course (2-5 minutes' duration)

As intimated to us by the CCE office at IIT Hyderabad, this video will be provided at a later stage.

	Weekly Course Plan	
Weeks	Lecture Names	Assignments
	Introductory concepts	
	 Motivation and background 	
Week 1	Historical perspective	Online
	Clinical relevance of biomaterials	
	 Biomaterials and biocompatibility 	
	Structural properties of polymeric biomaterials	
	Macromolecular arrangement	
Week 2	Polymerization	Online
	 Molecular weight distribution 	
	Conformation and configuration	
	Thermodynamic properties of polymeric biomaterials	
	Crystallinity models	
Week 3	 Glass transition and melting 	Online
	 Structure-property correlations 	
	Solvent interactions/effects	
	Bulk properties of polymeric biomaterials	
Wook /	Degradation mechanisms	Online
WEER 4	Mechanical deformation	Onime
	Viscoelastic behavior	
	Polymers in the clinic: Part 1	
Wook 5	 Overview of synthetic polymers 	Online
Week J	 Non-degradable synthetic polymers 	Onime
	Degradable synthetic polymers	
	Polymers in the clinic: Part 2	
Week 6	 Overview of natural polymers 	Online
Week o	 Proteins: conformation-property relations 	Onime
	Polysaccharides: property-function relations	
	Biomedical hydrogels	
	Cross-linking behavior	
Week 7	Swelling dynamics	Online
	Flory-Rehner theory	
	Polyelectrolyte-based hydrogels	
	Bulk processing	
Week 8	Polymeric scaffolds	Online
Week o	 Porosity and mechanical stability 	Onimic
	Important processing techniques	
	Surface properties & functional modification	
Week 9	The material-body interface	Online
Week 5	 Topography, hydrophobicity and charge 	Onimic
	Physico-chemical modification strategies	
	Protein adsorption	
	Factors affecting adsorption	
Week 10	 Adsorption kinetics and irreversibility 	Online
	 Conformational stability of proteins 	
	Competitive adsorption and Vroman effect	

	Implantation & performance	
	Inflammation and healing	Online
Week 11	Immune response: material perspectives	Online
	Infection, biofilms and calcification	
	Clinical translation	
Week 40	 Regulatory aspects for medical devices 	Online
Week 12	Implant and device failure	Online
	Case studies	

TA Details				
	:	Teaching Assistant 1	Teaching Assistant 2	Teaching Assistant 3
Name	:	Lalitha Sri Ramakrishnan	Swasthika Arunachalam	I have listed two TAs on a tentative basis. I request assistance from NPTEL with the allocation of one or two additional TAs as per the actual need.
Department	:	Interdisciplinary program	Chemical Engineering	
Email ID	:	id22resch11007@iith.ac. in	ch21resch11007@iith.ac.i n	
Mobile Number	:	+91-9940676521	+91-9486926002	
Currently pursuing degree	:	PhD	PhD	